Noise Health Close
 

Figure 6: Effects of early-life noise exposure on mPFC cytogenesis and astrogenesis. Left Panel contains graphics illustrating mean ± SEM of GFAP-positive cells (Top), BrdU-positive cells (middle-top), double labeled cells (middle bottom), and individual astrocyte optical density (bottom) in cingulate cortex, prelimbic cortex and infralimbic cortex. Cingulate cortex of EN exposed rats exhibited a signifi cant reduction of GFAP and BrdU positive cells (*P < 0.05) but not of double-labeled cells. Astrocytes from infralimbic area exhibited a more robust morphology evidenced by higher optical densities (*P < 0.05). Right panel illustrates differences among groups including staining for GFAP (red upper slices 730μ × 730μ), BrdU (stylized green cells in the middle-bottom pictures) and individual astrocyte density (stylized red cells in the bottom pictures)

Figure 6: Effects of early-life noise exposure on mPFC cytogenesis and astrogenesis. Left Panel contains graphics illustrating mean ± SEM of GFAP-positive cells (Top), BrdU-positive cells (middle-top), double labeled cells (middle bottom), and individual astrocyte optical density (bottom) in cingulate cortex, prelimbic cortex and infralimbic cortex. Cingulate cortex of EN exposed rats exhibited a signifi cant reduction of GFAP and BrdU positive cells (*<i>P</i> < 0.05) but not of double-labeled cells. Astrocytes from infralimbic area exhibited a more robust morphology evidenced by higher optical densities (*<i>P</i> < 0.05). Right panel illustrates differences among groups including staining for GFAP (red upper slices 730μ × 730μ), BrdU (stylized green cells in the middle-bottom pictures) and individual astrocyte density (stylized red cells in the bottom pictures)