Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
About us
My Preferences 


Export selected to
Reference Manager
Medlars Format
RefWorks Format
BibTex Format
  Access statistics : Table of Contents
   2020| October-December  | Volume 22 | Issue 107  
    Online since December 31, 2020

  Archives   Previous Issue   Next Issue   Most popular articles   Most cited articles
Hide all abstracts  Show selected abstracts  Export selected to
  Viewed PDF Cited
Noise induced epigenetic effects: A systematic review
Veruscka Leso, Luca Fontana, Ferdinando Finiello, Luigi De Cicco, Maria Luigia Ercolano, Ivo Iavicoli
October-December 2020, 22(107):77-89
DOI:10.4103/nah.NAH_17_20  PMID:33402608
Background: Noise-induced hearing loss (NIHL) is one of the leading causes of acquired sensorineural hearing loss. However, molecular mechanisms responsible for its pathogenesis remain to be elucidated. Epigenetic changes, i.e. DNA methylation, histone and microRNA expression modifications may function as a link between noise exposure and hearing loss. Therefore, the aim of the present review was to assess whether epigenetic alterations may serve as biomarkers of noise exposure or early effect. Materials and Methods: A systematic review of studies available in Pubmed, Scopus, and ISI Web of Science databases was performed. Results: Noise exposure was able to induce alterations in DNA methylation levels in workers and animal models, resulting in expression changes of genes related to hearing loss and also to extra-auditory effects. Differently expressed microRNAs were determined in NIHL workers compared to noise-exposed subjects with normal hearing, supporting their possible role as biomarkers of effect. Acoustic trauma affected histon acethylation and methylation levels in animals, suggesting their influence in the pathogenesis of acute noise-induced damage and their role as targets for potential therapeutic treatments. Conclusions: Although preliminary data suggest a relationship between noise and epigenetic effects, the limited number of studies, their different methodologies and the lack of adequate characterization of acoustic insults prevent definite conclusions. In this context, further research aimed to define the epigenetic impact of workplace noise exposure and the role of such alterations in predicting hearing loss may be important for the adoption of correct risk assessment and management strategies in occupational settings.
  2,540 17 -
Hearing loss among military personnel in relation to occupational and leisure noise exposure and usage of personal protective equipment
Hans Orru, Assar Luha, Mihkel Pindus, Rainer Jõgeva, Maie Vahisalu, Urve Lekk, Ene Indermitte, Eda Merisalu
October-December 2020, 22(107):90-98
DOI:10.4103/nah.NAH_12_19  PMID:33402609
Context: Hearing loss (HL) is a major health concern among military personnel due to noise from shooting, blasts, military vehicles, and noisy training environments. Nevertheless, one’s exposure can be partially reduced by using personal protective equipment (PPE). The aim of this study is to estimate the prevalence of HL among military personnel, to analyse associations between HL and self-reported occupational and leisure noise exposure, and use of PPEs. Materials and Methods: A cross-sectional study was conducted among 150 military personnel during their routine medical examinations. First, all participants filled in a questionnaire about their exposure to noise and later the respondents went through an audiometric test. The diagnostic criteria for slight, moderate, and severe HL was HL of 25–40, 41–60, and >60 dB at 4 and 6 kHz, respectively. The associations between noise exposure and HL were studied with multinomial logistic regression analysis. Results: The prevalence of slight to severe HL in high frequencies (4 and 6 kHz) among study participants was 62.7%. Nevertheless, the majority of it was slight, as the prevalence of severe HL was 9.3%. The prevalence of any kind of HL was highest in the Navy and the prevalence of severe HL was highest in the Central Command Units. The relative risk ratios (RRRs) for HL were higher among those who had been working for a long time in a noisy environment, working with noise-producing equipment, driving in a PASI or a Bandvagn or had been shooting with blanks at least once per week. It also appeared that military personnel who had HL, reported tinnitus more often. Respondents’ previous health problems, music-listening habits, and amount of exposure to loud noise in non-military environments were not independently associated with HL, but in several cases it increased the RRRs together with military exposure. We also found significantly more frequent HL among those never using PPEs. Conclusion: HL loss was more prevalent among personnel who are more often exposed to military noise, especially among those who never use PPEs. The effect was enhanced by leisure time noise, but it was not independently associated to HL.
  2,515 20 -