CURRENT ISSUE
PAST ISSUES
AHEAD OF PRINT
SEARCH
GET E-ALERTS
About us
Instructions
Subscribe
My Preferences
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
Access statistics : Table of Contents
2016| January-February | Volume 18 | Issue 80
Online since
January 19, 2016
Archives
Next Issue
Most popular articles
Most cited articles
Show all abstracts
Show selected abstracts
Export selected to
Viewed
PDF
Cited
ARTICLES
Age-related hearing decline in individuals with and without occupational noise exposure
Christina Hederstierna, Ulf Rosenhall
January-February 2016, 18(80):21-25
DOI
:10.4103/1463-1741.174375
PMID
:26780958
This study was conducted to compare the pattern of age-related hearing decline in individuals with and without self-reported previous occupational noise exposure. This was a prospective, population-based, longitudinal study of individuals aged 70-75 years, from an epidemiological investigation, comprising three age cohorts. In total there were 1013 subjects (432 men and 581 women). Participants were tested with pure tone audiometry, and they answered a questionnaire to provide information regarding number of years of occupational noise exposure. There were no significant differences in hearing decline, at any frequency, for those aged 70-75 years between the noise-exposed (
N
= 62 men, 22 women) and the nonexposed groups (
N
= 96 men, 158 women). This study supports the additive model of noise-induced hearing loss (NIHL) and age-related hearing loss (ARHL). The concept of different patterns of hearing decline between persons exposed and not exposed to noise could not be verified.
[ABSTRACT]
[FULL TEXT]
[PDF]
[Mobile Full text]
[EPub]
[CITATIONS]
[PubMed]
7,812
51
17
Evaluating effectiveness of dynamic soundfield system in the classroom
Aline Duarte da Cruz, Kelly Cristina Alves Silvério, Aline Roberta Aceituno Da Costa, Adriane Lima Mortari Moret, José Roberto Pereira Lauris, Regina Tangerino de Souza Jacob
January-February 2016, 18(80):42-49
DOI
:10.4103/1463-1741.174386
PMID
:26780961
Research has reported on the use of soundfield amplification devices in the classroom. However, no study has used standardized tests to determine the potential advantages of the dynamic soundfield system for normally hearing students and for the teacher's voice. Our aim was to evaluate the impact of using dynamic soundfield system on the noise of the classroom, teacher's voice and students' academic performance. This was a prospective cohort study in which 20 student participants enrolled in the third year of basic education were divided into two groups (i.e., control and experimental); their teacher participated. The experimental group was exposed to the dynamic soundfield system for 3 consecutive months. The groups were assessed using standardized tests to evaluate their academic performance. Further, questionnaires and statements were collected on the participants' experience of using the soundfield system. We statistically analyzed the results to compare the academic performance of the control group with that of the experimental group. In all cases, a significance level of
P
< .05 was adopted. Use of the dynamic soundfield system was effective for improving the students' academic performance on standardized tests for reading, improving the teacher's speech intelligibility, and reducing the teacher's vocal strain. The dynamic soundfield system minimizes the impact of noise in the classroom as demonstrated by the mensuration of the signal-to-noise ratio (SNR) and pupil performance on standardized tests for reading and student and teacher ratings of amplification system effectiveness.
[ABSTRACT]
[FULL TEXT]
[PDF]
[Mobile Full text]
[EPub]
[CITATIONS]
[PubMed]
7,534
29
2
Acoustic assessment of speech privacy curtains in two nursing units
Diana S Pope, Erik T Miller-Klein
January-February 2016, 18(80):26-35
DOI
:10.4103/1463-1741.174377
PMID
:26780959
Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s' standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered.
[ABSTRACT]
[FULL TEXT]
[PDF]
[Mobile Full text]
[EPub]
[CITATIONS]
[PubMed]
7,354
30
6
Evaluation of the effects of occupational noise exposure on serum aldosterone and potassium among industrial workers
Sajad Zare, Parvin Nassiri, Mohammad Reza Monazzam, Akram Pourbakht, Kamal Azam, Taghi Golmohammadi
January-February 2016, 18(80):1-6
DOI
:10.4103/1463-1741.174358
PMID
:26780955
The existing literature indicates that occupational exposure to noise may have adverse effects on workers' health. The aim of this study was to evaluate the possible effects of exposure to different sound pressure levels (SPLs) on serum aldosterone and potassium concentration among Iranian blue collar workers in Golgohar Mining and Industrial Company in Sirjan, Kerman Province, Iran. This case-control study was performed on 45 workers of Golgohar Mining and Industrial Company. The subjects consisted of 30 workers from manufacturing departments and 15 office employees of the mining company. The controls, mainly with administrative jobs were exposed to 72 dBA SPL. Cases, in two separate groups, were exposed to noise levels of 88 dBA and 103 dBA, respectively. Noise intensity was measured at the desired locations. Noise measurements were performed according to the International Organization for Standardization (ISO) 9612. To measure the serum aldosterone and potassium concentrations, a 5 mL blood sample was taken from each worker at the specified time intervals and aldosterone concentration was determined using enzyme-linked immunosorbent assay (ELISA) test in the laboratory. Repeated measurement and Spearman's correlation coefficient analysis were used with α = 0.05. Exposure to the different levels of sound pressure resulted in different aldosterone concentrations and meanwhile an increase in the SPL did not affect the concentration of potassium. From 10:00 AM to 10:30 AM, as SPL increased, aldosterone concentrations did not increase significantly but from 13:30 PM to 14:00 PM, raised SPL led to a significant increase in aldosterone concentration. However, there was no correlation between the concentration of potassium and different factors. This study indicated that increases in SPLs affect aldosterone concentration but at the same time do not have significant effects on serum potassium level.
[ABSTRACT]
[FULL TEXT]
[PDF]
[Mobile Full text]
[EPub]
[CITATIONS]
[PubMed]
7,326
35
8
Distortion product otoacoustic emissions in college music majors and nonmusic majors
Rebecca L. Warner Henning, Kate Bobholz
January-February 2016, 18(80):10-20
DOI
:10.4103/1463-1741.174372
PMID
:26780957
The presence and absence of distortion product otoacoustic emissions (DPOAEs) as well as DPOAE amplitudes were compared between college music majors and a control group of nonmusic majors. Participants included 28 music majors and 35 nonmusic majors enrolled at a university with ages ranging from 18-25 years. DPOAEs and hearing thresholds were measured bilaterally on all the participants. DPOAE amplitudes were analyzed at the following f2 frequencies: 1,187 Hz, 1,500 Hz, 1,906 Hz, 2,531 Hz, 3,031 Hz, 3812 Hz, 4,812 Hz, and 6,031 Hz. Significantly more music majors (7/28) than nonmusic majors (0/35) exhibited absent DPOAEs for at least one frequency in at least one ear. Both groups of students reported similar histories of recreational and occupational noise exposures that were unrelated to studying music, and none of the students reported high levels of noise exposure within the previous 48 h. There were no differences in audiometric thresholds between the groups at any frequency. At DPOAE f2 frequencies from 3,031 Hz to 6,031 Hz, nonsignificantly lower amplitudes of 2-4 dB were seen in the right ears of music majors versus nonmajors, and in the right ears of music majors playing brass instruments compared to music majors playing nonbrass instruments. Given the greater prevalence of absent DPOAEs in university music majors compared to nonmusic majors, it appears that early stages of cochlear damage may be occurring in this population. Additional research, preferably longitudinal and across multiple colleges/universities, would be beneficial to more definitively determine when the music students begin to show signs of cochlear damage, and to identify whether any particular subgroups of music majors are at a greater risk of cochlear damage.
[ABSTRACT]
[FULL TEXT]
[PDF]
[Mobile Full text]
[EPub]
[CITATIONS]
[PubMed]
6,936
26
4
Preferred listening levels of mobile phone programs when considering subway interior noise
Jyaehyoung Yu, Donguk Lee, Woojae Han
January-February 2016, 18(80):36-41
DOI
:10.4103/1463-1741.174383
PMID
:26780960
Today, people listen to music loud using personal listening devices. Although a majority of studies have reported that the high volume played on these listening devices produces a latent risk of hearing problems, there is a lack of studies on "double noise exposures" such as environmental noise plus recreational noise. The present study measures the preferred listening levels of a mobile phone program with subway interior noise for 74 normal-hearing participants in five age groups (ranging from 20s to 60s). The speakers presented the subway interior noise at 73.45 dB, while each subject listened to three application programs [Digital Multimedia Broadcasting (DMB), music, game] for 30 min using a tablet personal computer with an earphone. The participants' earphone volume levels were analyzed using a sound level meter and a 2cc coupler. Overall, the results showed that those in their 20s listened to the three programs significantly louder with DMB set at significantly higher volume levels than for the other programs. Higher volume levels were needed for middle frequency compared to the lower and higher frequencies. We concluded that any potential risk of noise-induced hearing loss for mobile phone users should be communicated when users listen regularly, although the volume level was not high enough that the users felt uncomfortable. When considering individual listening habits on mobile phones, further study to predict total accumulated environmental noise is still needed.
[ABSTRACT]
[FULL TEXT]
[PDF]
[Mobile Full text]
[EPub]
[CITATIONS]
[PubMed]
6,702
26
2
Investigation of the effect of the efficiency of noise at different intensities on the DNA of the newborns
Nesrin Ceylan, Sultan Kaba, Kamuran Karaman, Metin Celiker, Yildiray Basbugan, Nihat Demir
January-February 2016, 18(80):7-9
DOI
:10.4103/1463-1741.174364
PMID
:26780956
Hearing loss can occur in newborns exposed to high-level noise; noise exposure can cause more physiological stress and can lead to DNA damage. This study was designed to determine DNA damage in newborn rats exposed to sound at different concentrations. For this purpose, 28 newborn (3-6 days old) rats were divided into four groups of 7 rats in each group (Control and Groups of 40 decibel (dB), 70 dB, and 110 dB]. In the experimental groups, 40 dB, 70 dB, and 110 dB (7.5-15 kHz) of sound was applied to the experimental groups for 30 min a day for 7 days. DNA damage levels in the serums obtained from this study were determined by the enzyme-linked immunosorbent assay (ELISA) method. According to this, it was determined that DNA damage in the group exposed to 110 dB showed a statistically significant increase (
P
< 0.05) compared to the compared to the control, 40 dB, and 70 dB groups. Related to the subject, it was concluded that DNA damage may occur in newborns exposed to 110 dB or higher sound in neonatal units, wards, and home environments with newborn babies. Mothers should be warned about this situation and noise should be kept under 110 dB volume in the environments with the newborns.
[ABSTRACT]
[FULL TEXT]
[PDF]
[Mobile Full text]
[EPub]
[CITATIONS]
[PubMed]
5,950
28
2
CORRECTION OF ERRATUM
Correction of erratum: Erratum: Long-term noise exposure and the risk for type 2 diabetes: A meta-analysis
January-February 2016, 18(80):50-50
DOI
:10.4103/1463-1741.169800
PMID
:26790632
[FULL TEXT]
[PDF]
[Mobile Full text]
[EPub]
[PubMed]
3,463
42
-
Contact us
|
Sitemap
|
Advertise
|
What's New
|
Ahead Of Print
|
Feedback
|
Copyright and Disclaimer
|
Privacy Notice
© 2007 - Noise & Health | Published by Wolters Kluwer -
Medknow
Online since 1
st
May, 2007