Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
Read this article


    Article Cited by others


Does tinnitus "fill in" the silent gaps?

Campolo Jennifer, Lobarinas Edward, Salvi Richard

Year : 2013| Volume: 15| Issue : 67 | Page no: 398-405

   This article has been cited by
1 Using an appetitive operant conditioning paradigm to screen rats for tinnitus induced by intense sound exposure: Experimental considerations and interpretation
Sarah H. Hayes, Krystal Beh, Marei Typlt, Ashley L. Schormans, Daniel Stolzberg, Brian L. Allman
Frontiers in Neuroscience. 2023; 17
[Pubmed]  [Google Scholar] [DOI]
2 Objective Detection of Tinnitus Based on Electrophysiology
Shuwen Fan, Shufeng Li
Brain Sciences. 2022; 12(8): 1086
[Pubmed]  [Google Scholar] [DOI]
3 Neural signatures of auditory hypersensitivity following acoustic trauma
Matthew McGill, Ariel E Hight, Yurika L Watanabe, Aravindakshan Parthasarathy, Dongqin Cai, Kameron Clayton, Kenneth E Hancock, Anne Takesian, Sharon G Kujawa, Daniel B Polley
eLife. 2022; 11
[Pubmed]  [Google Scholar] [DOI]
4 The blinking eye as a window into tinnitus: A new animal model of tinnitus in the macaque
Lars Rogenmoser, Pawel Kusmierek, Denis Archakov, Josef P. Rauschecker
Hearing Research. 2022; : 108517
[Pubmed]  [Google Scholar] [DOI]
5 Comparison of two behavioral tests for tinnitus assessment in mice
Emily M. Fabrizio-Stover, Grace Nichols, Jamie Corcoran, Avni Jain, Alice L. Burghard, Christopher M. Lee, Douglas L. Oliver
Frontiers in Behavioral Neuroscience. 2022; 16
[Pubmed]  [Google Scholar] [DOI]
6 Transient Delivery of a KCNQ2/3-Specific Channel Activator 1 Week After Noise Trauma Mitigates Noise-Induced Tinnitus
Laura Marinos, Stylianos Kouvaros, Brandon Bizup, Bryce Hambach, Peter Wipf, Thanos Tzounopoulos
Journal of the Association for Research in Otolaryngology. 2021; 22(2): 127
[Pubmed]  [Google Scholar] [DOI]
7 Salicylate-Induced Changes in Hearing Thresholds in Mongolian Gerbils Are Correlated With Tinnitus Frequency but Not With Tinnitus Strength
Veralice Lanaia, Konstantin Tziridis, Holger Schulze
Frontiers in Behavioral Neuroscience. 2021; 15
[Pubmed]  [Google Scholar] [DOI]
8 Prepulse inhibition predicts subjective hearing in rats
Naoki Wake, Kotaro Ishizu, Taiki Abe, Hirokazu Takahashi
Scientific Reports. 2021; 11(1)
[Pubmed]  [Google Scholar] [DOI]
9 Using Extracochlear Multichannel Electrical Stimulation to Relieve Tinnitus and Reverse Tinnitus-Related Auditory-Somatosensory Plasticity in the Cochlear Nucleus
Min Chen, Shiyao Min, Chen Zhang, Xuerui Hu, Shufeng Li
Neuromodulation: Technology at the Neural Interface. 2021;
[Pubmed]  [Google Scholar] [DOI]
10 The gap prepulse inhibition of the acoustic startle (GPIAS) paradigm to assess auditory temporal processing: Monaural versus binaural presentation
Philippe Fournier, Sylvie Hébert
Psychophysiology. 2021; 58(3)
[Pubmed]  [Google Scholar] [DOI]
11 What’s the buzz? The neuroscience and the treatment of tinnitus
A. Henton, T. Tzounopoulos
Physiological Reviews. 2021; 101(4): 1609
[Pubmed]  [Google Scholar] [DOI]
12 Does Tinnitus Fill in the Gap Using Electrophysiology? A Scoping Review
Victoria Duda, Olivia Scully, Marie-Sarah Baillargeon, Sylvie Hébert
Otolaryngologic Clinics of North America. 2020; 53(4): 563
[Pubmed]  [Google Scholar] [DOI]
13 Effect of age on the gap-prepulse inhibition of the cortical N1-P2 complex in humans as a step towards an objective measure of tinnitus
Yunseo Ku, Do Youn Kim, Chiheon Kwon, Tae Soo Noh, Moo Kyun Park, Jun Ho Lee, Seung Ha Oh, Hee Chan Kim, Myung-Whan Suh, Susan E. Shore
PLOS ONE. 2020; 15(11): e0241136
[Pubmed]  [Google Scholar] [DOI]
14 Behavioral Deficits in Animal Models of Blast Traumatic Brain Injury
Aswati Aravind, Arun Reddy Ravula, Namas Chandra, Bryan J. Pfister
Frontiers in Neurology. 2020; 11
[Pubmed]  [Google Scholar] [DOI]
15 A Novel Mouse Model of Aminoglycoside-Induced Hyperacusis and Tinnitus
Ryan J. Longenecker, Rende Gu, Jennifer Homan, Jonathan Kil
Frontiers in Neuroscience. 2020; 14
[Pubmed]  [Google Scholar] [DOI]
16 Exposing Pathological Sensory Predictions in Tinnitus Using Auditory Intensity Deviant Evoked Responses
William Sedley, Kai Alter, Phillip E. Gander, Joel Berger, Timothy D. Griffiths
The Journal of Neuroscience. 2019; 39(50): 10096
[Pubmed]  [Google Scholar] [DOI]
17 Behavioral Models of Tinnitus and Hyperacusis in Animals
Sarah H. Hayes,Kelly E. Radziwon,Daniel J. Stolzberg,Richard J. Salvi
Frontiers in Neurology. 2014; 5
[Pubmed]  [Google Scholar] [DOI]
18 Changes in the Response Properties of Inferior Colliculus Neurons Relating to Tinnitus
Joel I. Berger,Ben Coomber,Tobias T. Wells,Mark N. Wallace,Alan R. Palmer
Frontiers in Neurology. 2014; 5
[Pubmed]  [Google Scholar] [DOI]
19 Spontaneous Behavior in Noise and Silence: A Possible New Measure to Assess Tinnitus in Guinea Pigs
Amarins N. Heeringa,Martijn J. H. Agterberg,Pim van Dijk
Frontiers in Neurology. 2014; 5
[Pubmed]  [Google Scholar] [DOI]
20 Tinnitus: animal models and findings in humans
Jos J. Eggermont,Larry E. Roberts
Cell and Tissue Research. 2014;
[Pubmed]  [Google Scholar] [DOI]
21 Effects of Unilateral Acoustic Trauma on Tinnitus-Related Spontaneous Activity in the Inferior Colliculus
Tessa-Jonne F. Ropp,Kerrie L. Tiedemann,Eric D. Young,Bradford J. May
Journal of the Association for Research in Otolaryngology. 2014;
[Pubmed]  [Google Scholar] [DOI]
22 Animal Models of Subjective Tinnitus
Wolfger von der Behrens
Neural Plasticity. 2014; 2014: 1
[Pubmed]  [Google Scholar] [DOI]
23 Insult-induced adaptive plasticity of the auditory system
Joshua R. Gold,Victoria M. Bajo
Frontiers in Neuroscience. 2014; 8
[Pubmed]  [Google Scholar] [DOI]