Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded5    
    Comments [Add]    

Recommend this journal


Year : 2023  |  Volume : 25  |  Issue : 118  |  Page : 143--157

Effects of Genes, Lifestyles, and Noise Kurtosis on Noise-Induced Hearing Loss

1 School of Public Health, Hangzhou Normal University, Hangzhou, China
2 Wu Yun Shan Hospital of Hangzhou, Hangzhou, China
3 Central People’s Hospital of Zhanjiang, Zhanjiang, China

Correspondence Address:
Zheng Li
School of public health, Hangzhou Normal University, No.58, Haishu Rd, Cangqian, Hangzhou 310000, Zhejiang
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/nah.nah_65_22

Rights and Permissions

Objective: To explore the association of lifestyles, caspase gene (CASP), and noise kurtosis with noise-induced hearing loss (NIHL). Design: Three hundred seven NIHL individuals and 307 matched controls from factories in Chinese factories participated in this case–control study. Age, sex, noise exposure, exfoliated oral mucosa cells, and lifestyles of participants were gathered by the authors. The single nucleotide polymorphisms (SNPs) were genotyped using the Kompetitive Allele Specific polymerase chain reaction (KASP) method. Results: The risk of NIHL was higher for people who worked in the complex noise environment than for people exposed to steady noise environment (adjusted: OR = 1.806, P = 0.002). Smoking and regular earphone use increased the risk of NIHL (adjusted: OR = 1.486, P = 0.038). The GG genotype of the recessive model and G allele in rs1049216, together with the TT genotype of the recessive model in rs6948 decreased the NIHL risk (adjusted: OR = 0.659, P = 0.017). Oppositely, the AA genotype of additive model in rs12415607 had a higher NIHL risk (adjusted: OR = 1.804, P = 0.024). In the additive models, there was a positive interaction between noise kurtosis and CASP3 polymorphisms (RERI = 1.294, P = 0.013; RERI = 1.198, P = 0.031). Conclusions: Noise kurtosis, three SNPs (rs1049216, rs6948, and rs12415607), smoking and earphone use were found to be related to NIHL, and there was a positive interaction between noise kurtosis and CASP3. Results from this study can be used to prevent and detect NIHL and for genetic testing.


Print this article     Email this article