Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded19    
    Comments [Add]    

Recommend this journal


Year : 2018  |  Volume : 20  |  Issue : 96  |  Page : 212--216

Impact of uncertainties related to noise indicator determination on observed exposure–effect relationship

1 Kirisits Consulting Engineers, Pinkafeld/Vienna; Department of Radiotherapy, Medical University of Vienna, Vienna, Austria
2 Department of Public Health, Health Services Research and Health Technology Assessment, UMIT—University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
3 Kirisits Consulting Engineers, Pinkafeld/Vienna, Austria

Correspondence Address:
Christian Kirisits
Gumpendorfer Str. 37/8, 1060 Wien
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/nah.NAH_57_17

Rights and Permissions

Context: Noise indicators are the basis to describe noise exposure–effect relationships. The assessment of these noise indicators in field studies includes various uncertainties, so that the true values differ from the determined values used for establishing curve fits. If the relationship between a noise indicator and its effect is nonlinear, uncertainties of the noise indicator modify the observed exposure–effect relationships. Materials and Methods: The determination of an exposure-relationship curve fit within a field study was simulated based on the assumption of a given true exposure-relationship without uncertainties and normal distributed uncertainties for the observed noise indicator used for the statistics. Results: In case of an upward curvature of the exposure–effect relationship, the uncertainty for the noise indicator value leads to an asymmetric effect for the curve fit. Uncertainties of the same amount of over- or underestimation will not result in an identical over- or underestimation of the observed effect. A simulation of this effect shows an increased curvature of the observed curve fit, with overestimated exposure–effect relationships. Conclusion: Although linear exposure–effect curves are not observed with a systematic shift, quadratic, cubic, and exponential curve forms include a systematic uncertainty in the presented exposure–response curve. If such curves are used to define threshold levels to limit harmful effects of noise, no further uncertainty margins are needed for those situations where the calculated noise indicator uncertainties are equal or lower than those present in the underlying field study.


Print this article     Email this article