Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded16    
    Comments [Add]    
    Cited by others 2    

Recommend this journal


Year : 2017  |  Volume : 19  |  Issue : 91  |  Page : 278--285

Using auditory steady-state responses for measuring hearing protector occlusion effect

Department of Mechanical Engineering, École de technologie supérieure, Université du Québec, Montréal, Québec, Canada

Correspondence Address:
Olivier Valentin
École de Technologie Supérieure, Département de Génie Mécanique, 1100 rue Notre-Dame Ouest, Montréal (QC), H3C 1K3
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/nah.NAH_13_17

Rights and Permissions

Introduction: The currently available methods for measuring the occlusion effect (OE) of hearing protection devices (HPDs) have limitations. Objective microphonic measurements do not assess bone-conducted sounds directly transmitted to the cochlea. Psychophysical measurements at threshold are biased due to the low-frequency masking effects from test participants’ physiological noise and the variability of measurements based on subjective responses. An auditory steady-state responses (ASSRs) procedure is used as a technique that might overcome these limitations. Participants and Methods: Pure-tone stimuli (250 and 500 Hz), with amplitude modulated at 40 Hz, were presented to twelve adults with normal hearing through a bone vibrator at three levels in 10-dB steps. The following two conditions were assessed: the unoccluded ear canal and occluded ear canal. ASSR amplitude data as a function of the stimulation level were linearized using least-square regressions. The ASSR-based “physiological” OE was then calculated as the average difference between the two measurements. Results: A significant statistical difference was found between the average threshold-based psychophysical OE and the average ASSR-based OE. Conclusion: This study successfully ascertained that it is possible to objectively measure the OE of HPD using ASSRs collected on the same participant both with and without protectors.


Print this article     Email this article