Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 CURRENT ISSUE    PAST ISSUES    AHEAD OF PRINT    SEARCH   GET E-ALERTS    
 
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed6992    
    Printed151    
    Emailed0    
    PDF Downloaded29    
    Comments [Add]    
    Cited by others 5    

Recommend this journal

 

 ORIGINAL ARTICLE
Year : 2016  |  Volume : 18  |  Issue : 83  |  Page : 185--193

Environmental propagation of noise in mines and nearby villages: A study through noise mapping


1 Department of Occupational Hygiene, National Institute of Miners' Health, Nagpur, India
2 Department of Environmental Science and Engineering, Indian School of Mines, Dhanbad, India

Correspondence Address:
Dr. Bibhuti B Mandal
Head of the Department, Department of Occupational Hygiene, National Institute of Miners' Health, JNARDDC Campus, Amravati Road, Wadi, Nagpur 440 023
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1463-1741.189246

Rights and Permissions

Background: Noise mapping being an established practice in Europe is hardly practiced for noise management in India although it is mandatory in Indian mines as per guidelines of the Directorate General of Mines Safety (DGMS). As a pilot study, noise mapping was conducted in an opencast mine with three different models; one based on the baseline operating conditions in two shifts (Situation A), and two other virtual situations where either production targets were enhanced by extending working hours to three shifts (Situation B) or only by increased mechanization and not changing the duration of work (Situation C). Methods: Noise sources were categorized as point, line, area, and moving sources. Considering measured power of the sources, specific meteorological and geographical parameters, noise maps were generated using Predictor LimA software. Results: In all three situations, Lden values were 95 dB(A) and 70–80 dB(A) near drill machine and haul roads, respectively. Noise contours were wider in Situation C due to increase in frequency of dumpers. Lden values near Shovel 1 and Shovel 2 under Situation B increased by 5 dB and 3 dB, respectively due to expansion of working hours. In Situation C, noise levels were >82 dB(A) around shovels. Noise levels on both sides of conveyor belts were in the range of 80–85 dB(A) in Situations A and C whereas it was 85–90 dB(A) in Situation B. Near crusher plants, it ranged from 80 to 90 dB(A) in Situations A and C and between 85 and 95 dB(A) in Situation B. In all situations, noise levels near residential areas exceeded the Central Pollution Control Board (CPCB) limits, i.e., 55 dB(A). Conclusions: For all situations, predicted noise levels exceeded CPCB limits within the mine and nearby residential area. Residential areas near the crusher plants are vulnerable to increased noise propagation. It is recommended to put an acoustic barrier near the crusher plant to attenuate the noise propagation.






[FULL TEXT] [PDF]*


        
Print this article     Email this article