Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 CURRENT ISSUE    PAST ISSUES    AHEAD OF PRINT    SEARCH   GET E-ALERTS    
 
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Email Alert *
Add to My List *
* Registration required (free)  
 


 
   Abstract
  Introduction
  Methods
  Results
  Discussion
   References
   Article Figures
   Article Tables
 

 Article Access Statistics
    Viewed7499    
    Printed235    
    Emailed1    
    PDF Downloaded30    
    Comments [Add]    
    Cited by others 9    

Recommend this journal

 


 
  Table of Contents    
ARTICLE  
Year : 2015  |  Volume : 17  |  Issue : 79  |  Page : 387-393
Impact of overnight traffic noise on sleep quality, sleepiness, and vigilant attention in long-haul truck drivers: Results of a pilot study

1 Department of Psychiatry and Psychotherapy, Centre of Sleep Medicine, University of Regensburg, Regensburg, Germany
2 Daimler AG, Group Research and Sustainability, Stuttgart, Germany
3 Department of Psychiatry and Psychotherapy, Centre of Sleep Medicine, University of Regensburg, Regensburg; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Social Foundation Bamberg, Bamberg, Germany

Click here for correspondence address and email
Date of Web Publication17-Nov-2015
 
  Abstract 

This study aimed to evaluate the impact of traffic noise along the motorway on sleep quality, sleepiness, and vigilant attention in long-haul truck drivers. This was a randomized, crossover, within-subject controlled study. Healthy long-haul truck drivers spent 6 consecutive nights in a real truck berth with full sleep laboratory equipment. During 3 nights, subjects were exposed to replayed traffic noise alongside motorways, whereas the other 3 nights were without traffic noise. Polysomnography was recorded during the nights and numerous sleepiness tests and vigilance examinations were performed during the following standardized working day. Outcome measures were compared between noisy and silent nights using the paired Wilcoxon test. Ten healthy long-haul truck drivers with a mean age of 36.3 ± 7.3 years completed the study as planned. On noisy nights, subjects had greater latencies to the rapid eye movement (REM) phase (90 ± 32 min vs 69 ± 16 min, P = 0.074) and higher percentages of sleep stage 1 (13.7 ± 5.5% vs 11.2 ± 4.4%; P = 0.059). Subjects also rated their sleep quality as having been better during nights without noise (28.1 ± 3.7 vs 30.3 ± 6.2, P = 0.092). The impact of these differences on daytime sleepiness and vigilance was rather low; however, mean Karolinska Sleepiness Scale (KSS) scores measured during the course of the following day were higher on six out of eight occasions after noisy nights. The effects of overnight traffic noise on sleep quality are detectable but unlikely to have any major impact on the vigilant attention and driving performance of long haul-truck drivers with low nocturnal noise sensitivity. This might not be true for subgroups prone to sleeping disorders.

Keywords: Fitness to drive, polysomnography, sleepiness, sleep quality, vigilance

How to cite this article:
Popp RF, Maier S, Rothe S, Zulley J, Crönlein T, Wetter TC, Rupprecht R, Hajak G. Impact of overnight traffic noise on sleep quality, sleepiness, and vigilant attention in long-haul truck drivers: Results of a pilot study. Noise Health 2015;17:387-93

How to cite this URL:
Popp RF, Maier S, Rothe S, Zulley J, Crönlein T, Wetter TC, Rupprecht R, Hajak G. Impact of overnight traffic noise on sleep quality, sleepiness, and vigilant attention in long-haul truck drivers: Results of a pilot study. Noise Health [serial online] 2015 [cited 2023 Nov 28];17:387-93. Available from: https://www.noiseandhealth.org/text.asp?2015/17/79/387/169698

  Introduction Top


Sleep is essential for human recovery and well-being. Impaired sleep or the lack of sleep overnight generally impairs daytime alertness and accordingly may affect fitness to drive as well. Patients with obstructive sleep apnea showed lower car driving performance [1],[2] and a significantly greater risk of being involved in traffic accidents than the general population. [3],[4],[5],[6],[7],[8],[9],[10] However, daytime sleepiness is far from being relevant only to subgroups with specific sleep disorders. It is a major cause of work and traffic accidents in general. [11] Several independent studies quite consistently revealed sleepiness to be involved in one out of four to five traffic accidents. [11] In a large survey in the UK, 29% out of the 4621 interviewed male car drivers admitted to having at least once almost fallen asleep while driving during the preceding year; [12] about 25% of such instances were reported by long-haul truck drivers. [13]

One of the most obvious exogenous factors by which sleep might be affected in the general population is traffic noise. It is a major cause of extrinsic sleep disturbances and negatively affects performance, mood, and health. [14],[15] It is also well established that nocturnal road traffic noise causes sound-induced awakenings and autonomic arousals during sleep. [16],[17] These physiological reactions lead to sleep fragmentation, which in turn can impair daytime functioning. Whereas the negative impact of traffic noise on sleep quality and sleep structure is well recognized, its relevance for daytime alertness or sleepiness has hardly been investigated yet. [18] It may be of particular interest in long-haul truck drivers because:

  1. They are more exposed to traffic noise than average road users,
  2. they are often forced to sleep during rest times along noisy motorways, and
  3. prevalence of daytime sleepiness, poor sleep quality, and sleeping disorders is known to be higher in truck drivers compared to the general population. [19],[20],[21]


Therefore, the current study aimed to evaluate the impact of overnight traffic noise on the nocturnal sleep quality, daytime sleepiness, and vigilant attention of long-haul truck drivers over during a mostly standardized but still realistic working week.


  Methods Top


Design

This was a randomized, crossover, within-subject controlled study in a setting simulating the typical working conditions of professional long-haul truck drivers. The subjects had to spend six consecutive nights in a real truck berth (Mercedes Benz Actros II, 1860 Megaspace) furnished with sleep laboratory equipment and to pass further sleepiness assessments during the following standardized working day, with two defined round trips on another truck (Mercedes Benz Actros II, 1841 Largespace, Powershift 16, with a truckload of 40t). During three consecutive nights the sleeping subjects were exposed to the usual traffic noise along motorways replayed from tape, whereas the other three nights served as control nights without noise. Half of the group started with the "silent nights" and the other one with the "noisy nights" before they crossed over, with the order of both conditions having been assigned randomly.

The study was compliant with all applicable legal obligations, the requirements of the Declaration of Helsinki, and Good Clinical Practice. It was approved by the local University Ethics Committee.

Sound presentation

For a maximum standardization throughout all "noisy nights," traffic noise was once recorded by a PAK MKII system (Müller-BBM VibroAkustik Systeme GmbH, Planegg, Germany) in an original truck berth (Mercedes Benz Actros II, 1860 Megaspace) at the interstate service area Denkendorf, Germany, during a November night from 10 PM to 6 AM. For data reduction, 10-min sequences were recorded every hour in waveform audio file format (.wav). During the nights with traffic noise exposure, each recorded audio file sequence was subsequently repeated six times using a playlist generated by the software Winamp ® 5.0 (Nullsoft Inc., San Francisco, USA, 2003). Thus, 8 h of audiotaped traffic noise was presented via a loudspeaker (KH O 98 active studio monitor, Klein + Hummel GmbH, Ostfildern, Germany) at the original loudness according to the recording of a calibration signal (94 dB). Mean sound pressure level of the recordings was 44.7 dB(A) [minimum: 37.4 dB(A) and maximum: 48.0 dB(A)]. Subjective ratings on the realistic noise exposure of the presented sound were comparable to those on traffic noise usually perceived by subjects during night rest along motorways.

Study population

Those eligible for inclusion in this study were male professional long-haul truck drivers accustomed to overnight stays in their trucks along motorways. They had to be 25-50 years of age and their regular bedtimes were in their spare time, usually between 9 PM and midnight. Subjects were excluded if they had any concomitant disease or symptoms affecting sleep or alertness according to International Classification of Sleep Disorder (ICSD) 2 criteria, self-rating scores for depression >40 [22] and for anxiety >36, [23] any relevant visual or auditory impairments, or a medical history of drug abuse/dependence according to criteria of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR™). For all participants, subjective noise sensitivity was assessed by the Noise Sensitive Questionnaire (NoiSeQ). [24] Strong smokers (>20 cigarettes/day) and coffee drinkers (>5 cups/day, i.e., > 400 mg caffeine per day) were also excluded. Coffee had to be discontinued the evening before and any psychoactive drugs at least 1 week prior to the experiments. Smoking was not allowed 15 min before and until the end of any examination. All patients had to give written informed consent to participate in the study.

Outcome measures

Objective measurements were performed on sleep quality using standard sleep parameters measured by polysomnography during all six nights and on daytime sleepiness using pupillography in the morning and at noon. Corresponding subjective assessments were made in parallel, on sleep quality in the morning and on sleepiness throughout the day; in the morning and at noon using the Stanford Sleepiness Scale (SSS) [25],[26] and the Tiredness Symptom Scale (TSS) [27] (at noon twice, at the beginning and at the end of a series of examinations) and about every 2 h as self-test using the Karolinska Sleepiness Scale (KSS). [28] Vigilance and sustained attention were tested using the Mackworth Clock test (MCT) according to Quatember and Maly [29] at noon as well as by the psychomotor vigilance task (PVT) [30] presented as a self-test on a Palm device about every 2 h. In addition, attention, reactive stress tolerance, and reaction speed was assessed by the Determination Test (DT) of the Vienna Test System at noon [Table 1]. All participating subjects were sufficiently trained on all testing procedures and received written instructions beforehand. All assessments were always performed in the same order.
Table 1: Overview of used techniques and outcome measures

Click here to view


  • Polysomnography was recorded in a standardized way [32] with the digital polysomnography system PTMS1-comlab 44 (Schwarzer GmbH, Munich, Germany). Horizontal and vertical eye movements were recorded by electrooculogram (EOG, four channels), muscle tonus at the chin by electromyogram (EMG, one channel), leg movements (EMG, two channels), electroencephalogram (EEG, six channels: C3, C4, O1, O2, A1, A2), and heart rate (one channel). In addition, subjects were connected to a microphone and thermistor to record snoring and nasal respiration, respectively; to sensors of thoracic and abdominal respiration movements; and to a pulse oximeter for the determination of arterial oxygen saturation. EEG electrodes were placed 10:20 as recommended by the German Society of Sleep Research and Medicine. [33] For all channels, the default settings of filters, frequencies, and sampling rates were adopted according to the American Academy of Sleep Medicine Manual for the scoring of sleep and associated events (Westchester, IL, USA). Sleep scoring data were based on sampling rates of 125 Hz for EOG and of 250 Hz for EEG and chin EMG. The high frequency filter was set at 35 Hz for EOG recordings and at 70 Hz for EEG and chin EMG records. The low frequency filters were 4.0 Hz for EOG, 0.3 Hz for EEG, and 0.032 Hz for chin EMG. Throughout the night, sleeping subjects were videotaped and monitored by clinical staff of the sleep disorder center. Polysomnographic recording times were standardized to 7 h of bedtime (from 11:15 PM to 6:15 AM). The noise level inside the cabin was recorded with a sound level meter (Cirrus Research, Frankfurt, Germany). Room temperature within the truck berth was automatically logged (TFA, Dostmann, Germany) and ranged 16-19°C.
  • Pupillography: The Pupillographic Sleepiness Test (PST, AMTech Pupilknowlogy GmbH, Dossenheim, Germany) was used to measure physiological sleepiness. Variations of the pupil diameter in the darkness correlate with autonomic sleepiness and are mostly unaffected by psychological factors. Those variations were measured by infrared videography during eight intervals of 82.5 s with a sampling frequency of 25 Hz and a spatial resolution of 0.05 mm. For each interval, the pupil unrest index (PUI) was measured in mm/min. [34],[35] The mean PUI-scores were calculated only if the interpolation rate (substitution of lost values because of an interrupted recording) for an interval was less than 25% and if at least four of the eight intervals could be included. A normal range in healthy non-sleep-deprived adults is determined at 3.5-6.6 mm/min (AMTech Pupilknowlogy GmbH).
  • The MCT according to Quatember and Maly is a computer-based vigilance test (VIGIL, S1, Quatember and Maly) of the Vienna Test System (Version 5.10, Schuhfried GmbH, Mödling, Austria) assessing sustained attention in a low-stimulus observation situation. A white dot jumped along a circular path of small circles from one to the next. Sometimes the dot skipped a circle and made a double jump, in which case subjects were supposed to press a button as soon as possible. Overall, 100 double jumps were to be recognised over 25 min. The number of omitted and false positive reactions and the mean reaction time (RT) were recorded.
  • The Palm psychomotor vigilance task (PalmPVT) is an easy-to-use, field-portable RT test on sustained attention over 5 min. The test runs on Palm-OS-based personal data assistants (PDAs) and is based on the fully digital "psychomotor vigilance test" (Model PVT-192; Ambulatory Monitoring Inc., Ardsley, NY, USA). Subjects had to press a button on the device at each occurrence of the same visual stimulus on the display. After each reaction, subjects received immediate feedback on their RT. The test comprised of 100 stimuli that were pseudo-randomly presented at intervals ranging 1-5 s. Outcome measure was the mean RT per session.
  • The DT was also a computer-based standard attention test (DT, S4, Hannover variant) of the Vienna Test System (as above) to assess reaction speed (in the action mode) and reactive stress tolerance (in the reactive mode). Subjects were presented in random order with one out of two different visual and one acoustic stimulus, to which they had to respond by pressing previously assigned buttons. The stimuli were differently presented in two separate runs: in the action mode, only the number of stimuli was fixed and the speed of presentation was paced by the response of the subject. Measured outcomes were mean RTs, and the number of false and true reactions. In the reaction mode, the time limit and speed of presentation were also fixed. This is cognitively more demanding than the action mode, as the task requires continuous and varying responses to very rapidly changing stimuli. In addition to the outcome measures of the action mode, the number of omissions, of delayed and of timely responses were counted.
  • Subjective evaluations of sleep quality and sleepiness were made based on standard rating tools, summarized in [Table 1].


Data analysis

For the statistical analysis, data of each outcome measure were averaged per subject for noisy and silent nights and afterward compared using the paired Wilcoxon test (repeated measures analysis of variance or other parametric data analyses were not feasible because of the small sample size and the violation of statistical assumptions). Due to the exploratory nature of the study, there was no correction for multiplicity, and significance level was set at alpha = 0.1. Data were analyzed using SPSS version 15.0 statistical software (SPSS Inc., Chicago, IL, USA).


  Results Top


Characteristics of truck drivers

All 10 recruited subjects completed the study as planned. They were all male, with a mean age of 36.3 ± 7.3 (standard deviation (SD); range: 25-46) years and a body mass index (BMI) of 25.2 ± 2.6 (range 21.7-30.0) kg/m 2 . On average, they had been working as truck drivers for more than 10 (10.4 ± 6.6; range: 2-23) years with an average of 133,600 km travelled per year. All of them were regularly consuming caffeinated beverages, with an average of 2.6 ± 0.5 cups/day. Nine of them were also smokers with an average consumption of 12.3 ± 6.6 cigarettes/day. The personal sleep requirement was estimated at 7.1 ± 1.3 h, although sleep during a usual working week in fact lasted 6.1 ± 0.7 h. Noise sensitivity was 1.8 ± 0.4 on a scale 0-3 and lowest on the sleep subscale (1.9 ± 0.5).

Sleep quality

On silent nights the subjects had a longer total sleep time on average, greater sleep efficiency, shorter time to rapid eye movement (REM) sleep, fewer arousals and changes of sleep phases, shorter waketime after sleep onset, and a subjectively better rated sleep quality. Although none of these differences was actually significant, the greater latency to REM sleep, the greater percentage of sleep stage 1, and the better subjective rating achieved P values <0.1 [Table 2].
Table 2: Sleep quality: Results of polysomnography and subjective assessment

Click here to view


Daytime sleepiness

On the following morning, pupillography did not reveal any difference in PUI after silent and noisy nights. No difference was observed in subjective assessments of sleepiness using the SSS or the TSS. At noon, there was still no difference in PUIs between silent and noisy nights, but both had significantly increased as compared to the morning measurement. No such trend was observed in the two subjective scales, although there were significant differences between the ratings at the beginning and the end of examinations after control nights [Table 3]. Differences on the KSS showed no significant difference between both conditions except at 8:30 AM [Figure 1] (P = 0.040). Mean scores were consistently higher after noisy nights on six out of eight occasions through the day and lower than after control nights on only one occasion [Figure 1]. The KSS significantly increased during the afternoon.
Figure 1: Mean subjective assessment of sleepiness (+ and − SD) on the Karolinska Sleepiness Scale (KSS) during the working day following the experimental nights
*Asterisk marks P levels <0.05


Click here to view
Table 3: Results of wakefulness testing the day following experimental nights

Click here to view


Vigilance, sustained attention, and reaction speed

On the MCT on vigilance, subjects had a greater average number of omitted reactions and a lower number of false positive reactions after noisy than after control nights, although none of these differences were significant; mean RTs were the same [Table 3].

On the DT, the mean number of false reactions was higher in both modes after noisy nights and reached borderline significance in the action mode (P = 0.093). All remaining differences were far from being significant and average readouts did not consistently indicate a better performance in favor of one or the other condition either [Table 3]. In particular, there was no noteworthy difference in RTs on either test. However, those showed significantly variations on the Palm self-test during the course of the day after control nights. They continuously increased from 6 PM with values greater than after noisy nights [Figure 2].
Figure 2: Mean RTs (+ and − SD) on the Palm psychomotor vigilance task (PalmPVT) during the working day following the experimental nights

Click here to view



  Discussion Top


This was the first experimental study investigating the impact of overnight traffic noise on sleep quality, daytime sleepiness, and vigilance specifically in long-haul truck drivers. It was performed in a most naturalistic but standardized setting, and a most comprehensive test program was used. Overall, negative effects of traffic noise were detectable on both sleep quality and daytime sleepiness. However, the negative impact of traffic noise was generally rather small, so our study turned out to be potentially underpowered and able to only reach borderline significance at best. Lacking power may thus be considered a weakness. Nevertheless, a larger study at the same level of standardization and with the same comprehensive test program would have hardly been feasible. We assume that by increasing the sample size, the observed differences could have reached statistical significance. However, as we found only subtle changes in sleepiness and performance outcome measures, these differences might not be of practical relevance. We speculate that even significant changes would have only a minor negative impact on overall daytime alertness and real-life performance in our subjects.

This is endorsed by the accordance of our results with those from a comparable Swedish pilot study exploring the impact of traffic noise on sleep quality in a truck berth and morning sleepiness in 6 male non-truck drivers. [36] The study also revealed only a few borderline significant differences related to REM latency and subjective sleep quality ratings. In another study in 72 healthy adults, air, road, and rail traffic noise were also found to affect ratings of sleep quality and recuperation primarily, whereas changes in sleep structure and performance measures were only subtle. [18] Thus, the observed small effects in our study might not be due to habituation or the generally rather low noise sensitivity of our study population.

However, even though the observed effects of traffic noise were small and thus unlikely to affect vigilant attention and sleepiness, they may still be of relevance due to chronicity and as they add to other known negative influences on sleep quality, specifically of long-haul truck drivers. Recent Australian studies revealed sleep quality in truck berths to be generally lower [37],[38] and less restorative than at home, [37] and long-term exposure to road traffic noise to be associated with increased morning tiredness. [39] In addition, evidence is growing of an association between long-term exposure to traffic noise and cardiovascular disease [40] and diabetes. [41] Beyond the known lower average health status of truck drivers in general, chronic sleep disorders appear to be common. Up to almost half of them were reported to suffer from poor sleep quality and hypersomnolence, [19],[21] more than one out of four might be at risk of having obstructive sleep apnea; [20] one out of five was reported to suffer from chronic sleep disturbances; and 27% and 15% from depression and anxiety, respectively. [31] Although this can hardly be shown, chronic exposure to overnight traffic noise is likely to contribute to this greater prevalence of sleeping disorders, even though it might not have any major short-term impact. Thus, efforts to reduce exposure to traffic noise, particularly in long-haul truck drivers, remain well justified.

However, these considerations also raise the question of the external validity of our data, as only healthy drivers without sleeping or mental disorders were enrolled and our standardized working day simulation excluded common naps, nighttime driving, or consumption of coffee. Whether exposure to overnight traffic noise may have greater "acute" effects on prone subgroups of long-haul truck drivers with sleeping disorders therefore remains an open question.

Acknowledgment

The authors would like to thank all the drivers participating in this study and Uwe Totzke for medical writing support. This work was supported by Daimler Benz.

Financial support and sponsorship

Daimler AG.

Conflicts of interest

Siegfried Rothe has been employed by Daimler AG, the sponsor of the study.

 
  References Top

1.
Juniper M, Hack MA, George CF, Davies RJ, Stradling JR. Steering simulation performance in patients with obstructive sleep apnoea and matched control subjects. Eur Respir J 2000;15:590-5.  Back to cited text no. 1
    
2.
Risser MR, Ware JC, Freeman FG. Driving simulation with EEG monitoring in normal and obstructive sleep apnea patients. Sleep 2000;23:393-8.  Back to cited text no. 2
    
3.
Basoglu OK, Tasbakan MS. Elevated risk of sleepiness-related motor vehicle accidents in patients with obstructive sleep apnea syndrome: A case-control study. Traffic Inj Prev 2014;15:470-6.  Back to cited text no. 3
    
4.
Findley LJ, Unverzagt ME, Suratt PM. Automobile accidents involving patients with obstructive sleep apnea. Am Rev Respir Dis 1988;138:337-40.  Back to cited text no. 4
    
5.
George CF, Nickerson PW, Hanly PJ, Millar TW, Kryger MH. Sleep apnoea patients have more automobile accidents. Lancet 1987;2:447.  Back to cited text no. 5
    
6.
Horstmann S, Hess CW, Bassetti C, Gugger M, Mathis J. Sleepiness-related accidents in sleep apnea patients. Sleep 2000;23:383-9.  Back to cited text no. 6
    
7.
Lloberes P, Levy G, Descals C, Sampol G, Roca A, Sagales T, et al. Self-reported sleepiness while driving as a risk factor for traffic accidents in patients with obstructive sleep apnoea syndrome and in non-apnoeic snorers. Respir Med 2000;94:971-6.  Back to cited text no. 7
    
8.
Teran-Santos J, Jimenez-Gomez A, Cordero-Guevara J. The association between sleep apnea and the risk of traffic accidents. Cooperative Group Burgos-Santander. N Engl J Med 1999;340:847-51.  Back to cited text no. 8
    
9.
Wu H, Yan-Go F. Self-reported automobile accidents involving patients with obstructive sleep apnea. Neurology 1996;46:1254-7.  Back to cited text no. 9
    
10.
Young T, Blustein J, Finn L, Palta M. Sleep-disordered breathing and motor vehicle accidents in a population-based sample of employed adults. Sleep 1997;20:608-13.  Back to cited text no. 10
    
11.
åkerstedt T. Consensus statement: fatigue and accidents in transport operations. J Sleep Res 2000;9:395.  Back to cited text no. 11
    
12.
Maycock G. Sleepiness and driving: The experience of UK car drivers. J Sleep Res 1996;5:229-37.  Back to cited text no. 12
    
13.
McCartt AT, Rohrbaugh JW, Hammer MC, Fuller SZ. Factors associated with falling asleep at the wheel among long-distance truck drivers. Accid Anal Prev 2000;32:493-504.  Back to cited text no. 13
    
14.
Griefahn B. Noise control during the night. Acoust Aust 1992;20:43-7.  Back to cited text no. 14
    
15.
Ising H, Kruppa B. Health effects caused by noise: Evidence in the literature from the past 25 years. Noise Health 2004;6:5-13.  Back to cited text no. 15
[PUBMED]  Medknow Journal  
16.
Marks A, Griefahn B, Basner M. Event-related awakenings caused by nocturnal transportation noise. Noise Control Eng J 2008;56:52-62.  Back to cited text no. 16
    
17.
Griefahn B, Brode P, Marks A, Basner M. Autonomic arousals related to traffic noise during sleep. Sleep 2008;31:569-77.  Back to cited text no. 17
    
18.
Basner M, Muller U, Elmenhorst EM. Single and combined effects of air, road, and rail traffic noise on sleep and recuperation. Sleep 2011;34:11-23.  Back to cited text no. 18
    
19.
Braeckman L, Verpraet R, Van Risseghem M, Pevernagie D, De Bacquer D. Prevalence and correlates of poor sleep quality and daytime sleepiness in Belgian truck drivers. Chronobiol Int 2011;28:126-34.  Back to cited text no. 19
    
20.
Catarino R, Spratley J, Catarino I, Lunet N, Pais-Clemente M. Sleepiness and sleep-disordered breathing in truck drivers: Risk analysis of road accidents. Sleep Breath 2014;18:59-68.  Back to cited text no. 20
    
21.
de Pinho RS, da Silva-Júnior FP, Bastos JP, Maia WS, de Mello MT, de Bruin VM, et al. Hypersomnolence and accidents in truck drivers: A cross-sectional study. Chronobiol Int 2006;23:963-71.  Back to cited text no. 21
    
22.
Zung WW. A Self-rating depression scale. Arch Gen Psychiatry 1965;12:63-70.  Back to cited text no. 22
    
23.
Zung WW. A rating instrument for anxiety disorders. Psychosomatics 1971;12:371-9.  Back to cited text no. 23
    
24.
Schutte M, Marks A, Wenning E, Griefahn B. The development of the noise sensitivity questionnaire. Noise Health 2007;9:15-24.  Back to cited text no. 24
[PUBMED]  Medknow Journal  
25.
Hoddes E, Dement WC, Zarcone V. The development and use of the stanford sleepiness scale (SSS). Psychophysiology 1972;10:431-6.  Back to cited text no. 25
    
26.
Shahid A, Wilkinson K, Marcu S, Shapiro CM. Stanford sleepiness scale (SSS). In: Shahid A, Wilkinson K, Marcu S, Shapiro CM, editors. STOP, THAT and One Hundred Other Sleep Scales. New York: Springer; 2012. p. 369-70.  Back to cited text no. 26
    
27.
Schulz H, Volk S, Yassouridis A. Measuring tiredness by symptoms. J Sleep Res 1991;20A:515.  Back to cited text no. 27
    
28.
Akerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual. Int J Neurosci 1990;52:29-37.  Back to cited text no. 28
    
29.
Nachreiner F, Hänecke K. Vigilance. In: Smith AP, Jones DM, editors. Handbook of Human Performance. Vol. 3. State and Trait. London: Academic Press; 1992. p. 261-88.  Back to cited text no. 29
    
30.
Thorne DR, Johnson DE, Redmond DP, Sing HC, Belenky G, Shapiro JM. The Walter Reed palm-held psychomotor vigilance test. Behav Res Methods 2005;37:111-8.  Back to cited text no. 30
    
31.
Shattell M, Apostolopoulos Y, Collins C, Sönmez S, Fehrenbacher C. Trucking organization and mental health disorders of truck drivers. Issues Ment Health Nurs 2012;33:436-44.  Back to cited text no. 31
    
32.
Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Los Angeles: Brain Information Service/Brain Research Institute; 1968.  Back to cited text no. 32
    
33.
Höller L. Grundlagen und technische Ausbildung: Technik der Polysomnographie im Schlaflabor. In: Schulz H, editor. Kompendium Schlafmedizin für Ausbildung, Klinik und Praxis. Vol 1. Ergänzungslieferung. Deutsche Gesellschaft für Schlafforschung und Schlafmedizin, eco-med, Landsberg. 1997.  Back to cited text no. 33
    
34.
Ludtke H, Wilhelm B, Adler M, Schaeffel F, Wilhelm H. Mathematical procedures in data recording and processing of pupillary fatigue waves. Vision Res 1998;38:2889-96.  Back to cited text no. 34
    
35.
Wilhelm B, Wilhelm H, Ludtke H, Streicher P, Adler M. Pupillographic assessment of sleepiness in sleep-deprived healthy subjects. Sleep 1998;21:258-65.  Back to cited text no. 35
    
36.
Kecklund G, Akerstedt T. Sleep in a truck berth. Sleep 1997;20:614-9.  Back to cited text no. 36
    
37.
Baulk SD, Fletcher A. At home and away: Measuring the sleep of Australian truck drivers. Accid Anal Prev 2012;45(Suppl):36-40.  Back to cited text no. 37
    
38.
Darwent D, Roach G, Dawson D. How well do truck drivers sleep in cabin sleeper berths? Appl Ergon 2012;43:442-6.  Back to cited text no. 38
    
39.
de Kluizenaar Y, Janssen SA, van Lenthe FJ, Miedema HM, Mackenbach JP. Long-term road traffic noise exposure is associated with an increase in morning tiredness. J Acoust Soc Am 2009;126:626-33.  Back to cited text no. 39
    
40.
Bluhm G, Eriksson C. Cardiovascular effects of environmental noise: Research in Sweden. Noise Health 2011;13:212-6.  Back to cited text no. 40
[PUBMED]  Medknow Journal  
41.
Sorensen M, Andersen ZJ, Nordsborg RB, Becker T, TjØnneland A, Overvad K, et al. Long-term exposure to road traffic noise and incident diabetes: A cohort study. Environ Health Perspect 2013;121:217-22.  Back to cited text no. 41
    

Top
Correspondence Address:
Roland FJ Popp
Department of Psychiatry and Psychotherapy, Centre of Sleep Medicine, University of Regensburg, Universitaetsstrasse 84, D-93053 Regensburg
Germany
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1463-1741.169698

Rights and Permissions


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]

This article has been cited by
1 Occupational and Environmental Noise Exposure and Extra-Auditory Effects on Humans: A Systematic Literature Review
Yongho Lee, Seunghyun Lee, Wanhyung Lee
GeoHealth. 2023; 7(6)
[Pubmed] | [DOI]
2 The effects of occupational noise on sleep: A systematic review
Saeid Yazdanirad, Amir Hossein Khoshakhlagh, Saleh Al Sulaie, Christopher L. Drake, Emerson M. Wickwire
Sleep Medicine Reviews. 2023; 72: 101846
[Pubmed] | [DOI]
3 Quantifying the Effect of Noise on Cognitive Processes: A Review of Psychophysiological Correlates of Workload
Jan Grenzebach, Erik Romanus
Noise and Health. 2022; 24(115): 199
[Pubmed] | [DOI]
4 Objective sleep assessments for healthy people in environmental research: A literature review
Xinbo Xu, Zhiwei Lian
Indoor Air. 2022; 32(5)
[Pubmed] | [DOI]
5 Discussion on regression analysis with small determination coefficient in human-environment researches
Xinbo Xu, Heng Du, Zhiwei Lian
Indoor Air. 2022; 32(10)
[Pubmed] | [DOI]
6 Environmental exposures and sleep outcomes: A review of evidence, potential mechanisms, and implications
Jianghong Liu, Lea Ghastine, Phoebe Um, Elizabeth Rovit, Tina Wu
Environmental Research. 2021; 196: 110406
[Pubmed] | [DOI]
7 Accumulation of sleep loss among shift-working truck drivers
Jussi Onninen, Mia Pylkkönen, Asko Tolvanen, Mikael Sallinen
Chronobiology International. 2021; 38(9): 1344
[Pubmed] | [DOI]
8 Geographical Distribution of Insomniac Patients in Western Iran
Shoeib Rahimi, Mohammad Rezaei, Parastoo Setareh, Habibolah Khazaie, Hiwa Mohammadi
Journal of Clinical Research in Paramedical Sciences. 2021; 10(2)
[Pubmed] | [DOI]
9 A laboratory study on the effects of wind turbine noise on sleep: results of the polysomnographic WiTNES study
Michael G Smith, Mikael Ögren, Pontus Thorsson, Laith Hussain-Alkhateeb, Eja Pedersen, Jens Forssén, Julia Ageborg Morsing, Kerstin Persson Waye
Sleep. 2020; 43(9)
[Pubmed] | [DOI]



 

Top