Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded34    
    Comments [Add]    
    Cited by others 10    

Recommend this journal


Year : 2014  |  Volume : 16  |  Issue : 72  |  Page : 270--278

A comparison of occupational and nonoccupational noise exposures in Sweden

1 Department of Environmental Health Sciences and Risk Science Center, University of Michigan, Ann Arbor, MI, USA
2 Department of Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
3 Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA

Correspondence Address:
Dr. Richard L Neitzel
Department of Environmental Health Sciences, Risk Science Center, University of Michigan, 6611D SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029
Login to access the Email id

Source of Support: This research was funded by grants from the Swedish Council for Working Life and Social Research (FAS Center programme 2006-1526) and AFA insurance (Noise research project 070153). The National Institute for Occupational Safety and Health provided support for the study in the form of loaned noise dosimeters. The authors are indebted to the participants in the study, and to Dr. Per Muhr for his assistance in gaining access to military fl ight technicians., Conflict of Interest: None

DOI: 10.4103/1463-1741.140503

Rights and Permissions

This study was conducted to evaluate noise exposures and the contributions of occupational and nonoccupational activities among three groups of Swedish workers (office workers, day care workers, and military flight technicians), and to evaluate risk factors for elevated hearing threshold levels. Forty-five subjects were recruited across the three groups. Each subject completed a risk factor questionnaire along with Békésy audiometry at frequencies between 125 and 8000 Hz. Subjects also wore a noise dosimeter continuously for 1 week, and documented their occupational and nonoccupational activities using a time-activity log. Subjects in all groups completed >7400 h of dosimetry, and had weekly exposures between 76 and 81 dBA. Day care workers had the highest daily exposures, and flight technicians had the highest weekly exposures. Most daily and weekly exposures exceeded the 70 dBA exposure limit recommended for prevention of any hearing loss. Subjects' perceptions of their exposures generally agreed well with measured noise levels. Among office workers, exposures were predominately nonoccupational, while among flight technicians nonoccupational and occupational activities contributed roughly equally, and among day care workers occupational exposures were dominant. Extreme exposures and cumulative noise exposure were associated with an increased risk of hearing threshold levels >10 dB hearing level. Effective hearing loss prevention programs may be needed in occupations not historically considered to be at high risk of noise-induced hearing loss (e.g., day care workers). Prevention efforts need to address nonoccupational exposures as well as occupational exposures, as nonoccupational activities may present the dominant risk of noise-induced hearing loss for some workers.


Print this article     Email this article