ARTICLE |
|
Year : 2013 | Volume
: 15
| Issue : 66 | Page : 315--325 |
Distortion product otoacoustic emission level maps from normal and noise-damaged cochleae
Deanna K Meinke1, Odile H Clavier2, Jesse Norris2, Robert Kline-Schoder2, Lindsay Allen2, Jay C Buckey3
1 University of Northern Colorado, Audiology and Speech-Language Sciences, Greeley, Colorado 80639 2 Creare, Inc., Hanover, New Hampshire 03755 3 Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756
Correspondence Address:
Deanna K Meinke UNC, Audiology and Speech Language Sciences, Campus Box 140, Gunter Hall 1500, Greeley, Colorado 80639
 Source of Support: We thank Dr. Brenda Lonsbury-Martin, Dr. Glen Martin and Barden Stagner for their support and assistance in developing and validating the instrumentation and software used in this research. We appreciate the work of Abigail Fellows,
Ashley Huerta, Amber Powner, Kathy Pritzl and numerous personnel at Creare Inc. who supported the project, Conflict of Interest: None  | Check |
DOI: 10.4103/1463-1741.116575
Distortion product otoacoustic emission (DPOAE) level mapping may be useful for detecting noise-induced hearing loss (NIHL) early. Employing DPOAE mapping effectively requires knowledge of the optimal mapping parameters to use for detecting noise-induced changes. The goal of this project was to show the map regions that differ most between normal and noise-damaged cochlea to determine the optimal mapping parameters for detecting NIHL. DPOAE level maps were generated for the 2f 1 -f 2 and the 2f 2 -f 1 DPOAEs for 17 normal hearing male subjects and 19 male subjects with NIHL. DPOAEs were measured in DPOAE frequency steps of approximately 44 Hz from 0.5 kHz to 6 kHz using constant f 2 /f 1 ratios incremented in 0.025 steps from 1.025 to 1.5 using both unequal-level (L1,L2 = 65,55 dB sound pressure level (SPL)) and equi-level (L1,L2 = 75,75 dB SPL) stimulus paradigms. Maximal responses for the 2f 2 -f 1 emission at L1,L2 = 65,55 dB SPL were found at lower ratios compared to previous studies. The map regions where NIHL eliminated or reduced DPOAE magnitude were identified. DPOAE level mapping using higher-level, equi-level primaries produced significantly more detectable emissions particularly for the 2f 2 -f 1 emission. The data from this study can be used to optimize DPOAE level mapping parameters for tracking noise-exposed subjects longitudinally.
[FULL TEXT] [PDF]*
|