Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 CURRENT ISSUE    PAST ISSUES    AHEAD OF PRINT    SEARCH   GET E-ALERTS    
 
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed6603    
    Printed320    
    Emailed14    
    PDF Downloaded95    
    Comments [Add]    
    Cited by others 9    

Recommend this journal

 

 ARTICLE
Year : 2009  |  Volume : 11  |  Issue : 43  |  Page : 103--110

Distortion product otoacoustic emissions in an industrial setting


1 Department of Otolaryngology, National University of Athens, Hippokration Hospital, Athens, Greece
2 Tzanion General Hospital, Piraeus, Greece

Correspondence Address:
Dimitrios G Balatsouras
23 Achaion Str. – Agia Paraskevi, 15343 – Athens
Greece
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1463-1741.50695

Rights and Permissions

Distortion product otoacoustic emissions (DPOAEs) is an objective sensitive test of cochlear function. The aim of this study was the evaluation of noise-induced hearing loss in a group of industrial workers, using this method in conjunction with standard puretone audiometry (PTA). One hundred and five subjects (210 ears) were included in the study. PTA, tympanometry, and DPOAEs were performed. Results were analyzed using a mixed analysis of variance model, and compared with the data of 34 normal persons of similar age and sex. We found statistically significant lower DPOAE levels in the noise-exposed group than in the control group. Additionally, the effect of frequency was significant, indicating that amplitude varied across frequency, with lower responses observed at 4 and 6 kHz, and maximum response found at 2 kHz. PTA showed a statistically significant effect of Group, owed to elevated puretone thresholds in the noise-exposed subjects, but a Frequency main effect was not found, although the interaction between Frequency and Group was statistically significant, as well as the interaction between Frequency and Ear. A main effect for Ear was found only in puretone thresholds, due to better thresholds in the left ears of the subjects, and not in DPOAE measurements. DPOAE levels were selectively affected at the higher frequencies, whereas puretone thresholds were affected at all frequencies. Direct comparison of the number of significantly affected ears between the two methods at 1, 2, and 4 kHz showed statistically significant differences at all comparisons, with more ears affected in PTA in comparison with DPOAEs at 4 kHz, whereas more ears were affected in DPOAEs at the lower frequencies (1 and 2 kHz). Therefore, it may be concluded that DPOAEs and PTA are both sensitive methods in detecting noise-induced hearing loss, with DPOAEs tending to be more sensitive at lower frequencies.






[FULL TEXT] [PDF]*


        
Print this article     Email this article