Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded207    
    Comments [Add]    
    Cited by others 19    

Recommend this journal


Year : 2003  |  Volume : 6  |  Issue : 21  |  Page : 17--37

An approach to the development of hearing standards for hearing-critical jobs

1 University of Ottawa, Faculty of Health Sciences, School of Rehabilitation Sciences, Audiology and Speech-Language Pathology Program, Ontario, Canada
2 House Ear Institute, Los Angeles, U.S.A.

Correspondence Address:
C Laroche
University of Ottawa, Faculty of Health Sciences, School of Rehabilitation Sciences, Audiology and Speech-Language Pathology Program, 451 Smyth road, Ottawa, Ontario, Canada, K1H 8M5

Login to access the Email id

Source of Support: None, Conflict of Interest: None

PMID: 14965451

Rights and PermissionsRights and Permissions

Many jobs at the Department of Fisheries and Oceans Canada (DFO) have several features in common: they are often performed in noisy environments and involve a number of auditory skills and abilities, such as speech communication, sound localization, and sound detection. If an individual lacks these skills and abilities, it may constitute a safety risk for this individual, as well as for fellow workers and the general public. A number of scientific models have been developed to predict performance on these auditory skills based on diagnostic measures of hearing such as pure-tone audiograms. While these models have significant scientific and research value, they are unable to provide accurate predictions of real life performance on auditory skills necessary to perform hearing-critical jobs. An alternative and more accurate approach has been developed in this research project. A direct measure of functional speech perception in noise (Hearing in Noise Test: HINT) has been identified and validated for use in screening applicants for hearing-critical jobs in DFO. This screening tool has adequate and well-defined psychometric properties (e.g. reliability, sensitivity, and validity) so that screening test results can be used to predict an individual's ability to perform critical auditory skills in noisy environments, with a known degree of prediction error. Important issues must be considered when setting screening criteria. First, the concept of hearing-critical tasks must be reviewed, since these tasks are often performed in high noise levels where normally-hearing people cannot hear adequately. Second, noise-induced hearing loss is frequent in these noisy environments, and workers who acquire a hearing loss might not continue to meet the minimal auditory screening criteria throughout their career. Other senses (e.g., vision, touch) also play an important role in these environments. Third, adaptation strategies have to be considered when recruits or incumbents fail the screening test.


Print this article     Email this article